Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pediatr Ann ; 52(9): e335-e343, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37695280

RESUMO

Health care providers engaging in cross-cultural work will likely experience culture shock, a psychological, behavioral, and physiologic response to new cultural environments that can significantly affect travelers. Culture shock has the potential for both negative and positive outcomes. Well-being, health, and professionalism can be negatively influenced during the peak of culture shock, but the experience may also positively promote transformative learning and professional identity formation. Culture shock has been carefully researched for different types of sojourners, such as undergraduate students and business personnel, but minimally for health care providers. This article defines culture shock, describes different health care-related cross-cultural opportunities, identifies factors contributing to culture shock, describes complexities related to measuring culture shock, depicts common cross-cultural challenges encountered by traveling health care providers, and offers tangible guidance to help prepare for culture shock. We conclude with a call for further research and resource development to support the well-being of an increasingly global health care workforce. [Pediatr Ann. 2023;52(9):e335-e343.].


Assuntos
Pessoal de Saúde , Aprendizagem , Humanos , Estudantes , Viagem
2.
J Cardiovasc Magn Reson ; 23(1): 116, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34670573

RESUMO

BACKGROUND: Preterm birth has been linked to an elevated risk of heart failure and cardiopulmonary disease later in life. With improved neonatal care and survival, most infants born preterm are now reaching adulthood. In this study, we used 4D flow cardiovascular magnetic resonance (CMR) coupled with an exercise challenge to assess the impact of preterm birth on right heart flow dynamics in otherwise healthy adolescents and young adults who were born preterm. METHODS: Eleven young adults and 17 adolescents born preterm (< 32 weeks of gestation and < 1500 g birth weight) were compared to 11 young adult and 18 adolescent age-matched controls born at term. Stroke volume, cardiac output, and flow in the main pulmonary artery were quantified with 4D flow CMR. Kinetic energy and vorticity were measured in the right ventricle. All parameters were measured at rest and during exercise at a power corresponding to 70% VO2max for each subject. Multivariate linear regression was used to perform age-adjusted term-preterm comparisons. RESULTS: With exercise, stroke volume increased 10 ± 21% in term controls and decreased 4 ± 18% in preterm born subjects (p = 0.007). This resulted in significantly reduced capacity to increase cardiac output in response to exercise stress for the preterm group (58 ± 26% increase in controls, 36 ± 27% increase in preterm, p = 0.004). Elevated kinetic energy (KEterm = 71 ± 22 nJ, KEpreterm = 87 ± 38 nJ, p = 0.03) and vorticity (ωterm = 79 ± 16 s-1, ωpreterm = 94 ± 32 s-1, p = 0.01) during diastole in the right ventricle (RV) suggested altered RV flow dynamics in the preterm subjects. Streamline visualizations showed altered structure to the diastolic filling vortices in those born preterm. CONCLUSIONS: For the participants examined here, preterm birth appeared to result in altered right-heart flow dynamics as early as adolescence, especially during diastole. Future studies should evaluate whether the altered dynamics identified here evolves into cardiopulmonary disease later in life. Trial registration None.


Assuntos
Nascimento Prematuro , Adolescente , Adulto , Teste de Esforço , Feminino , Ventrículos do Coração , Humanos , Recém-Nascido , Valor Preditivo dos Testes , Gravidez , Volume Sistólico , Adulto Jovem
3.
Early Hum Dev ; 160: 105426, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34332186

RESUMO

BACKGROUND: Premature birth is associated with lower levels of cardiorespiratory fitness (CRF) but the underlying mechanisms responsible remain unclear. This study assessed whether differences in cardiac morphology or function mediate differences in CRF among adolescents and young adults born preterm. METHODS: Adolescents and young adults born moderately to extremely premature (gestational age ≤ 32 weeks or birth weight < 1500 g) and age-matched term born participants underwent resting cardiac MRI and maximal exercise testing. Mediation analysis assessed whether individual cardiovascular variables accounted for a significant proportion of the difference in maximal aerobic capacity between groups. RESULTS: Individuals born preterm had lower VO2max than those born term (41.7 ±â€¯8.6 v 47.5 ±â€¯8.7, p < 0.01). Several variables differed between term and preterm born subjects, including systolic and diastolic blood pressure, mean pulmonary artery pressure, indexed left ventricular end-diastolic volume (LVEDVi), right ventricular end-diastolic volume (RVEDVi), LV mass (LVMi), LV stroke volume index (LVSVi), and LV strain (p < 0.05 for all). Of these variables, LVEDVi, RVEDVi, LVSVi, LVMi, and LV longitudinal strain were significantly related to VO2max (p < 0.05 for all). Significant portions of the difference in VO2max between term and preterm born subjects were mediated by LVEDVi (74.3%, p = 0.010), RVEDVi (50.6%, p = 0.016), and LVMi (43.0%, p = 0.036). CONCLUSIONS: Lower levels of CRF in adolescents and young adults born preterm are mediated by differences in LVEDVi, RVEDVi, and LVMi. This may represent greater risk for long-term cardiac morbidity and mortality in preterm born individuals.


Assuntos
Nascimento Prematuro , Adolescente , Tolerância ao Exercício , Feminino , Coração , Ventrículos do Coração/diagnóstico por imagem , Humanos , Lactente , Recém-Nascido , Gravidez , Volume Sistólico , Adulto Jovem
4.
Radiol Cardiothorac Imaging ; 2(3): e190033, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32734274

RESUMO

PURPOSE: To explore the feasibility of using four-dimensional (4D) flow MRI to quantify blood flow and kinetic energy (KE) in the heart during strenuous exercise. MATERIALS AND METHODS: For this prospective study, cardiac 4D flow MRI was performed in 11 healthy young adult participants (eight men, three women; mean age, 26 years ± 1 [standard deviation]) at rest and during exercise with an MRI-compatible exercise stepper between March 2016 and July 2017. Flow was measured in the ascending aorta (AAo) and main pulmonary artery (MPA). KE was quantified in the left and right ventricle. Significant changes in flow and KE during exercise were identified by using t tests. Repeatability was assessed with inter- and intraobserver comparisons and an analysis of internal flow consistency. RESULTS: Nine participants successfully completed both rest and exercise imaging. Internal flow consistency analysis in systemic and pulmonary circulation showed average relative differences of 10% at rest and 16% during exercise. For flow measurements in the AAo and MPA, relative differences between observers never exceeded 6% in any vessel and showed excellent correlation, even during exercise. Relative differences were increased for KE, typically on the order of 30%, with poor interobserver correlation between measurements. CONCLUSION: Four-dimensional flow MRI can quantify increases in flow in the AAo and MPA during strenuous exercise and is highly repeatable. KE had reduced repeatability because of suboptimal segmentation methods and requires further development before clinical implementation. Supplemental material is available for this article. © RSNA, 2020See also the commentary by Markl and Lee in this issue.

5.
JAMA Cardiol ; 5(8): 910-919, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32432648

RESUMO

Importance: Premature birth is associated with substantially higher lifetime risk for cardiovascular disease, including arrhythmia, ischemic disease, and heart failure, although the underlying mechanisms are poorly understood. Objective: To characterize cardiac structure and function in adolescents and young adults born preterm using cardiac magnetic resonance imaging (MRI). Design, Setting, and Participants: This cross-sectional cohort study at an academic medical center included adolescents and young adults born moderately to extremely premature (20 in the adolescent cohort born from 2003 to 2004 and 38 in the young adult cohort born in the 1980s and 1990s) and 52 age-matched participants who were born at term and underwent cardiac MRI. The dates of analysis were February 2016 to October 2019. Exposures: Premature birth (gestational age ≤32 weeks) or birth weight less than 1500 g. Main Outcomes and Measures: Main study outcomes included MRI measures of biventricular volume, mass, and strain. Results: Of 40 adolescents (24 [60%] girls), the mean (SD) age of participants in the term and preterm groups was 13.3 (0.7) years and 13.0 (0.7) years, respectively. Of 70 adults (43 [61%] women), the mean (SD) age of participants in the term and preterm groups was 25.4 (2.9) years and 26.5 (3.5) years, respectively. Participants from both age cohorts who were born prematurely had statistically significantly smaller biventricular cardiac chamber size compared with participants in the term group: the mean (SD) left ventricular end-diastolic volume index was 72 (7) vs 80 (9) and 80 (10) vs 92 (15) mL/m2 for adolescents and adults in the preterm group compared with age-matched participants in the term group, respectively (P < .001), and the mean (SD) left ventricular end-systolic volume index was 30 (4) vs 34 (6) and 32 (7) vs 38 (8) mL/m2, respectively (P < .001). Stroke volume index was also reduced in adolescent vs adult participants in the preterm group vs age-matched participants in the term group, with a mean (SD) of 42 (7) vs 46 (7) and 48 (7) vs 54 (9) mL/m2, respectively (P < .001), although biventricular ejection fractions were preserved. Biventricular mass was statistically significantly lower in adolescents and adults born preterm: the mean (SD) left ventricular mass index was 39.6 (5.9) vs 44.4 (7.5) and 40.7 (7.3) vs 49.8 (14.0), respectively (P < .001). Cardiac strain analyses demonstrated a hypercontractile heart, primarily in the right ventricle, in adults born prematurely. Conclusions and Relevance: In this cross-sectional study, adolescents and young adults born prematurely had statistically significantly smaller biventricular cardiac chamber size and decreased cardiac mass. Although function was preserved in both age groups, these morphologic differences may be associated with elevated lifetime cardiovascular disease risk after premature birth.


Assuntos
Coração/fisiopatologia , Miocárdio/patologia , Nascimento Prematuro/epidemiologia , Adolescente , Adulto , Fatores Etários , Doenças Cardiovasculares/etiologia , Estudos Transversais , Feminino , Coração/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Tamanho do Órgão , Nascimento Prematuro/patologia , Fatores Sexuais , Adulto Jovem
8.
Eur J Appl Physiol ; 119(4): 857-866, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30635708

RESUMO

PURPOSE: The long-term implications of premature birth on autonomic nervous system (ANS) function are unclear. Heart rate recovery (HRR) following maximal exercise is a simple tool to evaluate ANS function and is a strong predictor of cardiovascular disease. Our objective was to determine whether HRR is impaired in young adults born preterm (PYA). METHODS: Individuals born between 1989 and 1991 were recruited from the Newborn Lung Project, a prospectively followed cohort of subjects born preterm weighing < 1500 g with an average gestational age of 28 weeks. Age-matched term-born controls were recruited from the local population. HRR was measured for 2 min following maximal exercise testing on an upright cycle ergometer in normoxia and hypoxia, and maximal aerobic capacity (VO2max) was measured. RESULTS: Preterms had lower VO2max than controls (34.88 ± 5.24 v 46.15 ± 10.21 ml/kg/min, respectively, p < 0.05), and exhibited slower HRR compared to controls after 1 and 2 min of recovery in normoxia (absolute drop of 20 ± 4 v 31 ± 10 and 41 ± 7 v 54 ± 11 beats per minute (bpm), respectively, p < 0.01) and hypoxia (19 ± 5 v 26 ± 8 and 39 ± 7 v 49 ± 13 bpm, respectively, p < 0.05). After adjusting for VO2max, HRR remained slower in preterms at 1 and 2 min of recovery in normoxia (21 ± 2 v 30 ± 2 and 42 ± 3 v 52 ± 3 bpm, respectively, p < 0.05), but not hypoxia (19 ± 3 v 25 ± 2 and 40 ± 4 v 47 ± 3 bpm, respectively, p > 0.05). CONCLUSIONS: Autonomic dysfunction as seen in this study has been associated with increased rates of cardiovascular disease in non-preterm populations, suggesting further study of the mechanisms of autonomic dysfunction after preterm birth.


Assuntos
Teste de Esforço , Exercício Físico/fisiologia , Frequência Cardíaca/fisiologia , Nascimento Prematuro/fisiopatologia , Sistema Nervoso Autônomo/fisiopatologia , Ergometria/métodos , Tolerância ao Exercício/fisiologia , Feminino , Humanos , Hipóxia/fisiopatologia , Recém-Nascido , Masculino , Gravidez , Adulto Jovem
9.
Am J Respir Crit Care Med ; 198(12): 1549-1558, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29944842

RESUMO

Rationale: Premature birth affects 10% of live births in the United States and is associated with alveolar simplification and altered pulmonary microvascular development. However, little is known about the long-term impact prematurity has on the pulmonary vasculature.Objectives: Determine the long-term effects of prematurity on right ventricular and pulmonary vascular hemodynamics.Methods: Preterm subjects (n = 11) were recruited from the Newborn Lung Project, a prospectively followed cohort at the University of Wisconsin-Madison, born preterm with very low birth weight (≤1,500 g; average gestational age, 28 wk) between 1988 and 1991. Control subjects (n = 10) from the same birth years were recruited from the general population. All subjects had no known adult cardiopulmonary disease. Right heart catheterization was performed to assess right ventricular and pulmonary vascular hemodynamics at rest and during hypoxic and exercise stress.Measurements and Main Results: Preterm subjects had higher mean pulmonary arterial pressures (mPAPs), with 27% (3 of 11) meeting criteria for borderline pulmonary hypertension (mPAP, 19-24 mm Hg) and 18% (2 of 11) meeting criteria for overt pulmonary hypertension (mPAP ≥ 25 mm Hg). Pulmonary vascular resistance and elastance were higher at rest and during exercise, suggesting a stiffer vascular bed. Preterm subjects were significantly less able to augment cardiac index or right ventricular stroke work during exercise. Among neonatal characteristics, total ventilatory support days was the strongest predictor of adult pulmonary pressure.Conclusions: Young adults born preterm demonstrate early pulmonary vascular disease, characterized by elevated pulmonary pressures, a stiffer pulmonary vascular bed, and right ventricular dysfunction, consistent with an increased risk of developing pulmonary hypertension.


Assuntos
Hipertensão Pulmonar/epidemiologia , Pulmão/irrigação sanguínea , Doenças Vasculares/epidemiologia , Adulto , Fatores Etários , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Masculino , Estudos Prospectivos
10.
Physiol Rep ; 6(12): e13719, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29952137

RESUMO

A patent foramen ovale (PFO) is linked to increased risk of decompression illness in divers. One theory is that venous gas emboli crossing the PFO can be minimized by avoiding lifting, straining and Valsalva maneuvers. Alternatively, we hypothesized that mild increases in external inspiratory and expiratory resistance, similar to that provided by a SCUBA regulator, recruit the PFO. Nine healthy adults with a Valsalva-proven PFO completed three randomized trials (inspiratory, expiratory, and combined external loading) with six levels of increasing external resistance (2-20 cmH2 O/L/sec). An agitated saline contrast echocardiogram was performed at each level to determine foramen ovale patency. Contrary to our hypothesis, there was no relationship between the number of subjects recruiting their PFO and the level of external resistance. In fact, at least 50% of participants recruited their PFO during 14 of 18 trials and there was no difference between the combined inspiratory, expiratory, or combined external resistance trials (P > 0.05). We further examined the relationship between PFO recruitment and intrathoracic pressure, estimated from esophageal pressure. Esophageal pressure was not different between participants with and without a recruited PFO. Intrasubject variability was the most important predictor of PFO patency, suggesting that some individuals are more likely to recruit their PFO in the face of even mild external resistance. Right-to-left bubble passage through the PFO occurs in conditions that are physiologically relevant to divers. Transthoracic echocardiography with mild external breathing resistance may be a tool to identify divers that are at risk of PFO-related decompression illness.


Assuntos
Resistência das Vias Respiratórias/fisiologia , Embolia Aérea/etiologia , Forame Oval Patente/complicações , Forame Oval Patente/diagnóstico , Adolescente , Adulto , Ecocardiografia , Embolia Aérea/diagnóstico por imagem , Embolia Aérea/fisiopatologia , Esôfago/fisiopatologia , Expiração/fisiologia , Feminino , Forame Oval/diagnóstico por imagem , Forame Oval/fisiopatologia , Forame Oval Patente/fisiopatologia , Humanos , Inalação/fisiologia , Masculino , Adulto Jovem
11.
Physiol Rep ; 6(6): e13620, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29595875

RESUMO

Preterm birth temporarily disrupts autonomic nervous system (ANS) development, and the long-term impacts of disrupted fetal development are unclear in children. Abnormal cardiac ANS function is associated with worse health outcomes, and has been identified as a risk factor for cardiovascular disease. We used heart rate variability (HRV) in the time domain (standard deviation of RR intervals, SDRR; and root means squared of successive differences, RMSSD) and frequency domain (high frequency, HF; and low frequency, LF) at rest, as well as heart rate recovery (HRR) following maximal exercise, to assess autonomic function in adolescent children born preterm. Adolescents born preterm (less than 36 weeks gestation at birth) in 2003 and 2004 and healthy age-matched full-term controls participated. Wilcoxon Rank Sum tests were used to compare variables between control and preterm groups. Twenty-one adolescents born preterm and 20 term-born controls enrolled in the study. Preterm-born subjects had lower time-domain HRV, including SDRR (69.1 ± 33.8 vs. 110.1 ± 33.0 msec, respectively, P = 0.008) and RMSSD (58.8 ± 38.2 vs. 101.5 ± 36.2 msec, respectively, P = 0.012), with higher LF variability in preterm subjects. HRR after maximal exercise was slower in preterm-born subjects at 1 min (30 ± 12 vs. 39 ± 9 bpm, respectively, P = 0.013) and 2 min (52 ± 10 vs. 60 ± 10 bpm, respectively, P = 0.016). This study is the first report of autonomic dysfunction in adolescents born premature. Given prior association of impaired HRV with adult cardiovascular disease, additional investigations into the mechanisms of autonomic dysfunction in this population are warranted.


Assuntos
Doenças do Sistema Nervoso Autônomo/etiologia , Recém-Nascido Prematuro/fisiologia , Nascimento Prematuro/fisiopatologia , Adolescente , Teste de Esforço , Feminino , Frequência Cardíaca/fisiologia , Humanos , Recém-Nascido , Masculino , Gravidez
12.
Am J Physiol Regul Integr Comp Physiol ; 308(1): R28-33, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25394826

RESUMO

While there is an increased prevalence of stroke at altitude in individuals who are considered to be low risk for thrombotic events, it is uncertain how venous thrombi reach the brain. The patent foramen ovale (PFO) is a recruitable intracardiac shunt between the right and left atrium. We aimed to determine whether body position and oxygen tension affect blood flow through the PFO in healthy adults. We hypothesized that hypoxia and body positions that promote right atrial filling would independently recruit the PFO. Subjects with a PFO (n = 11) performed 11 trials, combining four different fractions of inhaled oxygen (FiO2) (1.0, 0.21, 0.15, and 0.10) and three positions (upright, supine, and 45° head down), with the exception of FiO2 = 0.10, while 45° head down. After 5 min in each position, breathing the prescribed oxygen tension, saline bubbles were injected into an antecubital vein and a four-chamber echocardiogram was obtained to evaluate PFO recruitment. We observed a high incidence of PFO recruitment in all conditions, with increased recruitment in response to severe hypoxia and some contribution of body position at moderate levels of hypoxia. We suspect that increased pulmonary vascular pressure, secondary to hypoxia-induced pulmonary vasoconstriction, increased right atrial pressure enough to recruit the PFO. Additionally, we hypothesize that the minor increase in breathing resistance that was added by the mouthpiece, used during experimental trials, affected intrathoracic pressure and venous return sufficiently to recruit the PFO.


Assuntos
Forame Oval Patente/complicações , Hemodinâmica , Hipóxia/complicações , Oxigênio/sangue , Postura , Adolescente , Adulto , Altitude , Pressão Arterial , Função do Átrio Direito , Biomarcadores/sangue , Meios de Contraste/administração & dosagem , Ecocardiografia , Feminino , Forame Oval Patente/sangue , Forame Oval Patente/diagnóstico por imagem , Forame Oval Patente/fisiopatologia , Decúbito Inclinado com Rebaixamento da Cabeça , Humanos , Hipóxia/sangue , Hipóxia/fisiopatologia , Injeções Intravenosas , Masculino , Artéria Pulmonar/fisiopatologia , Circulação Pulmonar , Índice de Gravidade de Doença , Cloreto de Sódio/administração & dosagem , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/fisiopatologia , Decúbito Dorsal , Fatores de Tempo , Resistência Vascular , Vasoconstrição , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...